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FOREWORD

This report was prepared at the Polytechnic Institute
of Brooklyn, and was sponsored by the Aircraft Laboratory,
Directorate of Laboratories, Wright Air Development Center,
under Contract Io. AF 18 (600)-154, Research and Develop-
ment Order 4o. 455-45, "Helicopter and Convertiplane Vibra-
tion," with Dr. Orville R. Rogers acting as project engineer.
This report is the second of two technical reports subitted
under this contract. The first report, WADC TR 53-355,
"Helicopter Blade-Forces Transmitted to the Rotor Hub in
Flight," was published simultaneously.
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ABSTRACT

Based on a simplified model of the hub-fuselage

structure, a theoretical analysis is made of the re-

sponse of the hub and fuselage of a helicopter in

flight to harmonic forces transmitted by the rotor blades

to the hub both in, and normal to, the plane of rotation.

The assumed structure is in the form of a plane frame-

work with masses concentrated at the Joints. Simple

expressions are derived for the vibration amplitudes

of the mass points as functions of the masses and

natural frequencies of the hub and the fuselage. The

pertinent non-dimensional parameters are determined,

and simple explicit conditions of resonance are derived.

Numerical examples are given to illustrate the results.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE ODMNANDER:

f Colonel, USAF
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SYMBOLS

3 modulus of elasticity of material

of a bar.

eix* eis amplitudes of elastic deflections

of mass point i (i=l, 2, 3) in x

and z directions, respectively, due

to exciting force in rotor plans

of rotation (TiIO).

iixr. inr amplitudes of rigid-body deflections

of mass point i in x and z direct-

ions, respectively, for P 10.

eixt, eiz t  amplitudes of total deflections of

mass point i in x and z directions,

respectively, for I1=0.

Siz ,sis ,Sixr etc. same as corresponding unprimed

quantities, except that exciting

force is normal to plane of ro-

tation (72=0).

7 7 x  exciting harmonic forces in z and

x directions, respectively.

71l 12  amplitudes of P and Px, respect-

ively (eqs. (2a) and (2b)).

f = Wf/Wh= c/H. Ratio of fuselage

natural frequency to hub natural

frequency.

H = Wh/l . Ratio of hub natural

frequency to rotor angular speed.

H . value of H for resonance.
rem.

kA~kbgk o  spring moduli of bars A, 3 and 0

respectively. (7ig. 1). kS=kA .

1length of a bar.

X = l/m2 .

1I  total mass of blades, pylon and

blade-hub connections.

2  half of the gross mass of the

fuselage.
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n number of rotor blades.

S cross-sectional area of a bar.

t time

u, v i  (time-dependent) total deflections

of mass point i (i=l, 2, 3) in the

z and z directions respectively.

(Fig. 1).

x direction of intersection of rotor

plane of rotation with plane of

simnlified hub-fuselage structure

(rig. 1).

9 direction normal to plane of ro-

tation

ratio of frequency of exciting

harmonic force to rotor angular

speed. (eqs. (2a) and (2b)).

0 angle in hub-fuselage structure

(Fig. 1).

1rotor angular speed

Mf natural frequency of fuselage (see

also eq. (8)).

W natural frequency of hub structure

(see also eq. (7)).to f/fl,

Tre. avalue of9for resonance.

WADC mR 53-286



INTRODUCTION

This report represents the second phase of research

sponsored by the Air Force on the response of various

structural parts of a helicopter to the harmonic forces

transmitted in flight by the rotor blades to the hub.

In the first phase of this research, a detailed analytic

determination (reference 1) was made of the forces pro-

duced by the helicopter blades at the hub. The connect-

ions between the hub, pylon and its support on the fuselage

were assumed as rigid, so that the hub and pylon would

have only a negligble influence on the blade forces. In

the present report, the forces transmitted to the hub are

considered as known, and the response of the helicopter

hub and fuselage to these forces is investigated. The

problem here is thus essentially one of the forced vibrat-

ions of an elastic structure induced by given external

exciting forces.

Although considerible work on ground vibrations of

helicopters has been accomplished (for example, references

2 and 3), relatively little theoretical research has been

performed on the response of rotors to harmonic exciting

forces in flight. The chief work, which is fairly recent,

along these lines is reference 4, where an analysis is

made of the response of helicept$r rotors to harmonic

blade-forces in the plane of rotation. The method of

analysis there is based on the ground vibration analysis

of reference 2.

Since the actual helicopter rotor structure is com-

plicated, it is necessary, in analyzing theoretically the

response of a rotor to harmonic forcesto make ertain

simplifying assumptions. In particular it is necessary

to assume a simplified rotor and fuselage, but nevertheless

to retain the essentials of the aetual structure. For this

purpose, a particularly simple physical model of the hub-

fuselage stvucture, in the form of a plane framework with

WADC TR 53-286 vii



masses concentrated at the Joints, is assumed in the

proeseat analysis. In spite of the simplicity of such

a model, it will be seen that it includes most of the

essentials of the actual helicopter configuration, such

as the mass and elastic characteristics of both the hub

and the fuselage.

The analysis in this investigation is in a sense

an extension of that in referente 4, since the present

investigation includes exciting harmonic forces and

consequent motions not only in the rotor plane of rotation,

but also normal to the plane. In fact, the rotor response

to forces normal to the plane will be shown here to be

a function of the natural frequency of the fuselage,

although the response to exciting forces in the plane

of rotation is not a function of this property. Con-

seauently, the zatural frequency of the fuselage does

not appear as a parameter in reference 4.

Since the structural model analyzed here is con-

siderably different from that treated in reference 4,

the method of analysis is also different. In reference

4, the Lagrange equations of motion are applied to a

system of (n+2) degrees of freedom (n- number of rotor

blades), while in the present investigation, a fairly

simple application is made of DtAlembert's principle

to the motion of three mass points essenti&lly connected

by springs. In spite of such differences the final

results derived here are, for the rotor response to an

exciting force in the plane of rotation, quite similar

to those of reference 4.
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I

The Simplified Structure

The simolified hub-fuselage structure assumed in

the present analysis is shown in Figure 1. This may be

regarded as a symmetrical -plane framework with masses

concentrated at the Joints. The bare connecting the

three joints may be assumed as free of bending vibration,

so that only longitudinal vibrations occur in the bars,

i.e. the bars act only in tension or compression. The

mass m 1 at joint 1 consists primarily of the total mass

of the rotor blades and of the pylon-hub-blade connections.

The masses a2 at joints 2 and 3 may each be considered as

equal to half of the gross mass of the fuselage. As in

the ase of a helicopter in flight, the structure in Figure

I ts assumed to be suspended freely in space by the lift on

the rotor blades.

The bars (A and 3) between points 1 and 2, and 1 and

3, mal'be interpreted as representing the structure at

the .zb Vhile the bar (C) between points 2 and 3 may be

regarded as representing the fuselage structure. These

three bars can be treated dynamically as springs with

elastic odult k , k B (=kA) and k0 , respectively, where

kA represem+s the elastic resistance of the hub and k

that of the fuselage . If the bare are regarded as ordinary

structural components of a framework, then, by Hooke's law,

kA - BASA/' A k - Rcc/L (1)

It will be seen subsequently that it is mere convenient to

replace kA and k0 by parameters proportional to the natural

frequencies of the hub support and of the fuselage.

k has the usual meaning of force per elongation.
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It is assumed that given external harmonic forces of

the form
72 = F1 cos V t (2a)

1x = 7 2o5 t (2b)

act at point 1 (Figure 1) in the z and x directions,

respectively, where z is normal to the rotor plane of

rotation, and x is perpendicular to z and in the plane of

the (simplified) structure of hub and fuselage. FI and 72

are given constants, i.e. independent of time, and are

considered as representing the magnitudes of the net forces

transmitted by the rotor blade system to the hub in direct-

ions normal to, and in, the plane of rotation, respectively.

If the blades are balanced, and only a single harmonic is

assumed to be transmitted to the hub, then, as shown in

e.g., reference 1,

=n (3)

where n is the number of rotor blades.

II

Basic Dynamic Equations

The equations of motion for each mass point in

?igure 1 can be derived by applying D'Alembert's theorem

of inertia forces, and assuming that each bar exerts a

restoring force which acts in the direction of the lon-

gitudinal axis of the bar, and which has a magnitude

proportional to the elongn.tion and to the spring modulus

(k) of the bar. Let ui and vi denote the displacements of

the mass point i in the x and z directions, respectively,

and let it be assumed that these displhcements are

sufficiently small so that only first-degree terms in these

displacements need be taken into account. Then the elongat-

ion (A 1 ) of each bar will be:

A = (UI-u 2 ) Cos a + (v1-v2) sin e

( 2 )B= (u3 -u1 ) cos a + (V1 -V3 ) sin e

U3-u 2

WADC TR 53-286 2



The conditions of equilibrium of inertia, elastic and

external forces for each of the three mass points in the

x and z directions yield, with the use of equations (2a),

(2b) and (4), the following six linear differential

equations in the six unknowns ui(t), vi(t)(i=l, 2, 3):

-m i.+k A C(u2-2ul+U3 ) cos e + (v 2-v 3) sin O)cos e+? 2cohi/Jt=e (5a)

-mIV1 -kA[(U 3 - U 2 )cos G +(2v 1 -V 2-V 3 )sin ]sin 0+F1 cogyat=0 (5b)

-m 2T 2+kA[(ul-u 2 )cos 9 +(v 1 -V 2 )sin e] cos e+k C (u3 -u 2 )=O (5c)

-mS2'* 2+[A (UlU 2 )COs e+(v 1 -V2 )sin e3sin e = o (sd)

2 11 3+kA(U1-u 3 )Ces +(v 3 -vl)sin Q]cos e+k (u 2-u 3)=O (56)

-m2 3+kA[(uu ) cos 0 + (Vl-V3)sin 0]= 0 (5f)

As indicated previously, the hub and fuselkge structural

properties can be characterized by natural frequencies instead

of by the spring moduli, although the natural frequencies are

determined by the spring moduli. Such natural frequencies

can be obtained by first considering the motion of the hub

without the motion of the fuselage. In the simplified

structure of Figure 1, this can be interpreted as letting

points 2 and 3 be fixed, while only point 1 is free to

move. The natural frequency thus obtained would be that

of a structure composed of (massless) springs A and B with

ends fixed tn a fixed rigidbar 0, and with a mass m I at point 1.

An expression for this natural freouency can be derived

from eouations (5a) -ind (5b) by setting Fl=F 2 =u 2 =u 3 =v2=v3 =,

and noting that the solutions of the two resulting different-

ial equations denote simple harmonic motions with frequencies

W hu and a)hv respectively, givIn by:

- 2kc .os a(6a)mhu m

2 2k Asin 2 (6b)
hv = 1

WADC TR 53-286 3



These frequencies can be interpreted as the natural fre-

quencies of the hub structure for motion in, and normal to,

the plane of rotation, respectively. *hu and whhv can, if

desired, also be interpreted simply as reference natural

frequencies defned by equations (6a) and (6b). For -45 0

which is the case to be worke& out in detail in the present

analysis, mhu = mhv=mh (say), where

2 k A (7)

A& expression for a natural frequency denoting the

elastic stiffness of the fuselage (without hub) can be

obtained in an analogous foshion. Here, one can consider

the motion, in the x direction, of the structure composed

of the two masses m2 connected by the(maseless) spring of

modulus k 1 The natural frequency of this system can be

derived by setting kA= 0 (i.e. fuselage isolated from hub)

in equations (5c) and (5e), and noting that the simple

harmonic solution of these equations then has a frequency

wf given by:
2 2 k0  (8)

f m2

Thus, k0 can be re-lced by the physically more significant

parameter wf) which again may be regarded as either a

reference frequency defined by equation (8), or as the

natural frequency of the fuselage structure, unaffected

by the hub or pylon connections.

III

General Solution of Equations

To obtain the gt eral solution of equations (5a)-(5f),

no significant loss in generality will be incurred if

e is given a specific value. Consequently, it wikl
0

now be assumed that 49=45 .Moreover, it will be convenient

WADC TR 53-286 4



to give the solution separately for 1=0, and for 72=03

since the solution for F1+ O and 721 0 simultaneously will

simply be the sum of these two separate solutions.

Zquations (5a)-(5f) can be solved by setting

ui a ixt cos )) t

vi = sist csV$.It (9)

(i - 1, 2, 3)

where oixt and ois t are constants. Six linear algebrati

equations in the six unknowns e ixt and sis t are thus

obtained. For 0-45 and 1 =0, the solution of these

equations is found to be:

*" W 2 1 " ( +M) "H -(10a

7 2
..... z (MR2/ y 2) (lob)

2xt 2a1 d2 2 (1+M) R 2 V..

e3x t =2x t  (lOc)

lst -o (10d)

*2st a 2xt (10.)

e3 st = -e2X t  (lOf)

For 0,, 4, 0e and 72 0, the solution is found to be (using

primes to denote the case 7 = 0):

elxt, = 0 (lla)

2z 1 2 M ( I 2.p V+( ) V2 2
2 N 2

WADC TR 53-286 5



3xt 2xt - 9(7 2 (l1e)
*1-M(i- 2 2)+ --R i R- 2) (11d)

*lst ,2)
181 RQ M 2 - V2_ -2

2 H2

(11e)
2st = 2_ 2 2

1 - 2

a /

3%t 2zt (lf)

where the non-dimensional parp.metere are defined as follows:

M M 1I / 2

R w=h/ 
(12)

M is a mass-rftio parameter, while H and T are elastic

parameters of the hub and the fuselage structure, respectively.

Since the structure analyzed here is suspended freely

in space, it follows that the three mass points can be dis-

placed in such a manner that the entire structure moves

as a rigid body. The expressions given in equations (lOa)-

(lOf) and (lla)-(llf), therefore, include rigid-body dis-

placements, and denote the sum of such displacements and

elastic disrlacements. (The subscript "t" has consequently

been used, to denote Ototal" disnlacements.) The rigid-

body displacements themselves can be derived from eovations

(lOa)-(llf) by letting -> w and T c there, i.e. by

letting the hub and fuselage become infinitely stiff. The

following expressions (denoted by subscript "r") are thus

WADC TR 53-286 6



obtained for the rigid-body dispolacements (with e= 45 )

for F= 0 and for F 2= 0, respectively:

2

_- ) M -) (13a)
elxr 2 2 + M

e2xr = e xr/2 (13b)

e3x r = elxr/2 (13c)

e lzr = 0 (13d)

e 2 %r  = elxr/2 (13e)

e3z r  = - elxr/2 (13f)

e = 9 (14a)
lxr

02xr / o (14b)

/
*3x r  =0 (14c)

________M (14d)

eLsr = -lz 1(--2e)
m 1 2  )2 2+

/ /
e2zr = e (14e)

* = (1.4f)
3zr lzr

As a check on these expressions it can be verified from

equations (4) that if the displacement amplitudes are given

by equations (13a)-(14f), then the elongqtion of each br

will be zero.

wADc TR 53-286 7



The displacements which are probably of the most

pratical interest here are the elastic displacements,

which may be denoted as ex and s*I (subscripts "r"

and Ot" are omitted), and which can be defined by relations

of the form:

six = eixt -eixr, etc. (5)

Substitution of equations (10), (11), (13) and (14) into

equations (15) leads to the following expressions for the

elastic deflections of the three mass points:

1 2 . 1 1 _ __ (16a)
lx ' "2 10 22

e 2x= -(M/2) e 1  (16b)

e3x -(M/2) ex (16c)

es =0 (16d)

e 2 -(M/2) alx (16e)

o = (M/2) e x (16f)

/

ex =0 (l7a)

/ - 1 _ + , . ...... -2  ( 17b )

2X2 2_ 2 ) _
2 2

* /(lc

e3x = 2x (17c)

/ .71 1 (2/H, 2 (P 2 P2)

... 2 2 .1 . 2_. . )( - _2 ) (j 2/ If ) (l7d)
2 H 2

/ /
o5 = -(M/2)e 1 . (17e)

/ i

3 -(M/2)°i, (17f)

WADC TR 53-286 8



If more than a single external harmonic force acts at

the hub, for example if Fx= 2 V coo n t, then equations

(16a)-(17f) remain valid for each Y, with F., for example,

replaced by F2I , and the resulting expressions for each J/

need merely be added. In the subsequent discussion, how-

ever, it will be assumed that only a single exciting

harmonic force acts at the hub, and that J/ can be replaced

by n, the number of rotor blades (cf. equation (3)).

IV

Resonance and Other Implications of General Solution

XQuations (16a)-(17f) are particularly simple general

expressions, quite convenient for calculation, giving the

response of the hub-fuselage structure to harmonic forces

transmitted by the blades to the hub in flight. The terms

with subscript *x" denote vibrational motions in the rotor

plane of rotation, while those with subscript "2" denote

motions normal to the plane.

It should be noted that for 71=0, i.e. for external

harmonic forces acting only in the plane of rotation, the

deflections, as functions of the pertinent parameters,

will be of the form:

- .. 2 - (,) (18a)
m1 f 2

For 7 2=0 i.e. for external harmonic forces acting onlr

normal to the plane of rotation, the deflections will be

of the form;
/ F1 I

.. (MH, 5 ) (18b)

WADC T 53-286 9



Thus, the deflections are proportional to the parameters2 i2
(F2/ml-2 ) or (Fl1/miX2 ), and are functions of the three

dimensionless parameters M, H and q. For forces acting

only in the plane of rotation, however, the deflections

are seen to be independent of the fuselage freouency

parameter I
Because of the fact that in practice M<<l, it will

be found that for external harmonic forces in the plane

of rotation, elx will ordinarily have the largest mag-

nitude. This means that the mass point 1 (Figure 1),

corresponding to the hub-rotor blade connections, will

vibrate with greater amplitude than mass points 2 and 3,

corresponding to the hub-fuselage connections. This is,

perhaps, to be expected, since the extern&l harmonic

forces, transmitted by the blades to the hub, are assumed

to act at point 1. However, for an external harmonic

force acting normal to the rotor plane of rotation, it

will be seen subsequently that points 1 and 2 may vibrate

with roughly eoual amplitudes under certain snecial condit-

ions (cf. equations (21) and (22) below).

The conditions of resonance are of particular prac-

tical importance, since they indicate the conditions which

should be avoided in actual design. Resonance may be

defined here as the condition unddr which the magnitudes

of the deflections, as given by equations (16a)-(17f),

become indefinitely large. For the system analyzed here,

there will be two different types of resonance conditions,

namely one for a force acting in the plane of rotation

(71=0)9 and one for a force acting normal to the plane of

rotation (F2=0).

For a force in the plane of rotation, eouations (16a)-

(16f) imply that resonance will occur when

(l+M) H2  -n 2 = 0 (19a)

Therefore the va lue (H ) of H for resonance isres.

H n (19b)
rep.

WADC TR 53-286 10



Thus, resonance will occur for a "hub natural.frequency"

Wh slightly less than n L

For a force normal to the plane of rotation, eauations

(17a)-(17f) imply the following condition for resonance:
2 2

M(n2 -(n + (n2- 2) =2 (20a)
M~ - 2 H 2 /

o r 2 2 . + M H 2 ( 2 0 b )
2 2n

res -n22

n - (1+M) H2

2

Equation (20b) will ordinarily imply that for a given H,

?2 zn 2 for resonance, i.e. for a given hub natural fre-

quency parameter H, resonance will occur when the "fuselage

natural frequency" wf is approximately equal to n1 . .

For a given fuselage natural frequency parameterip, the

value of 32 for resonance due to an extiting force normal

to the plane of rotation, according to eouation (20a),

will be:

H o 2 n2  - 2 _92 2  (200)

roe2 (1+M) 2+0c

Thus, for a given 9 P r n, or wf nl , for

res.fresonance. If 9P<u, then H res. < n, but if n<T< /-2" U,

then H > n (unlike the case of resonance due to anres •
exciting force in the plane of rotation).

For a fixed ratio f(/wfh F /H) of fuselage to hub

natural frequency, the condition of resonance i somewhat

different in nature from that (cf.eouation (20c)) for a fixed

fuselage natural freauency. For a fixed f, in fact, there

will in general be two values of H for resoaance, given

according to equation (20a) byt
2 2 2

Hr2 = n 1+M+f :'-2 -" (20d)
f (2+M)

Equ,tion (20d), with M (necessarily) positive, implies that

if (and only if) 0<f<,-/-, then one of the values of H
re5.
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will be less than n, while the other will exceed n.

Equations (20a)-(20d) are. of course, all mathematically

equivalent, but indicate the different points of view

discussed above.

It may be of interest to observe the asymptotic be-

havior of the elastic deflections as the natural frequencies

of the hub and of the fuselage become infinitely large,

i.e. as the hub-fuselage structure becomes infinitely stiff.

As H---> a 0 it follows from equations (16a)-(16f) that

eix and si-*0. Moreover, as H--oo while f is fixed, /

and hence q -- ) ov equations (17a)-(17f) imply that Six/

and e* --->0. These results are, of course, to be

anticipated on physical grounds. However, if T (instead of

f) is fixed, then as H---i, it follows from equations (17b)

and (17d) that

(e 1) _.1 M A -_..
2x H--->o 2m, R 2 n2 (l+M)- 2 ( )

(0 1)1 2 (21)

Relations (21) indicate that with the fuselage natural fre-

quency parameterqp fixed, the vibrations due to a harmonic

force normal to the plae of rotation will approach a

finite (i.e. non-zero) magnitude as the hub natural fre-

quency becomes indefinitely large. This result can be

explained by noting that in this case, since T is fixed, the

fuselage elastic stiffnesss does not at the same time also

become indefinitely large.

It may be observed from equations (17a)-(17f) that in

the special case of =Y (=n), i.e. Or- nR , the response

of the hub-fuselage structure to a harmonic force (of fre-

quency n £-1 ) normal to the plane of rotAtion will be

independent of H, i.e. independent of the hub stiffness. Hence

WADC TR 53-286 12



resonance cannot occur in this special case for any non-

vanishing valud of H. In this case, in fact, equations

(17b) and (17d) yield:

(e 2x/ ) zn21=n 1

(22)

1 z U=n m1 0 2 n2 ( 2 + )
In this case, therefore, as also in the case H--*e with

Tfixed (cf. equations (21)), point 2 (Figure 1) will have

an amplitude of deflection slightly greater than that of

point 1.

It is interesting, finally, to note that for an external

harmonic force acting normal to the rotor plane of rotation,

a condition exists under which the elastic vibrational

motions of the hub-fuselage structure will occur only in the

plane of rotation. Prom equations (17d)-(17f) it is seen

that this will occur when

2(n 2 - IF) - MH = 0

or H2= __Z (n2 -  ?2) (23)

/

When equation (23) is satisfied, then since only e2/ and

e / will not vanish (cf. equations (17a)-(17f)), the forced

elastic vibrations of the hub-fuselage due to a harmonic

force (of frequency n fl ) normal to the plane of rotation

will consist only of vibrations of points 2 and 3 (fuselage-

hub connections, Figure 1) in the plane of rotation.

V

Numerical Zxamples

To illustrate more explicitly the results of the pre-

sent analysis, numerical exarples will be worked out, based
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on the following data, which is fairly typical:

a = 3 (three-bladed rotor)

I = 9.30 slugs (=300 lbs.)

= 28 rad./sec. (=268 r. p. m.)

M = 0.15

It will be assumed, moreover, that

F = 400 lbs., F2 = 1000 lbs.

The values for F and I2 used here are based on the theor-

etical results of the numerical example carried out in

reference 1 for the forces transmitted by the blades to the

hub in flight. [For a three-blpded helicopter of gross

weight 4660 lbs., it was found, in fact, that a net harmonic

force of magnitude 400 lbs. (and frequency 3 -a ) would

be transmitted in the direction normal to the plane of

rotation, while a net harmonic load of magnitude lU 5 lbs.

would be transmitted in the plane of rotation.] Since the

amplitudes of the vibretions are directly proportional to

y1 and F29 it follows that for any values of F 1 and 2

other than those assumed in the present examples, the

deflections can be reidily obtained from those to be

given here.

Since the largest deflections (in absolute value) in

these examples will be jel.1 due to the force (given by F2 )

in the plane of rot.tion, and jel"I due to the force

(given by F I ) normal to the plane of rotation, only these

two quantities need be considered here in detail.

From equation (16a), it follows, with the present

data, that

e 1.240 inches (24)

lx - 7.81

Eouation (2?4) for jelx j vs. H is plotted in Figure 2. It is

interesting to compi-re these results with those of reference

4., which are based on a different type of analysis. The case

in reference 4 corresponding most closely to the plane

structure treated here is probably.x /_ny =0 (in the
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notation of reference 4), i.e. infinite stiffness in a dir-

ection normal to the plane of the structure. Equation (24)

is seen to have the same form as the expression for hub

response in Figure 4 of reference 4, and the resonance con-

dition based on equation (24), namely H res= 2.79, is seen to

be almost equivalent to that, namely Hre s = 2.72, of reference

4. The amplitudes of deflection are considerably greter here

than in reference 4, but this is due to the fact that the

numerical results here are based on a much larger external

harmonic force (I2 = 1000 lbs.) than that assumed in refer-

ence 4 (where a load of 50 lbs. per blade in the plane of

rotation is assumed,so that 72= (3/2) x 50 = 75 bs.), If

the deflections in Figure 2 are multiplied by 75/1000, then

the deflections will be found to be of the same order of

magnitude as those in reference 4, with the present results

indicating a somewhat smaller response.

Substitution of the data assumed here into equ:tion

(17d) yields:

0 =0 5 2( 9_ J}-0.15H 2 inches (25a)

H2 (10.35 -0~75 TP 2 ) -J2-(9 TA)
e12

In terms of the fuselage-hub natural frequency ratio

f(= /H), equation (25a) can be written in the form:

/ = 0.305 _(l. ..2),- 0.!5 - 2 f2  inches (25b)
13 10.35 - f2 (9-1.075H2 )-(81/H 2)

Equations (25a) and (25b) for Ies/ I as a function of H for

various fixed fuselage natural frequencies (fixed q ), and

as a function of H for various fixed fuselage-hub natural

frequency ratios (f), are shown plotted in Figures 3 and

4, respectively. The resonance conditions are also tabu-

lated there

As shown explicitly in reference 1, this force is due not
only to drag, but also to Coriolis, lift, inertia and cen-
trifugal components.

One of the choices for f in Figure 4, namely f=.F"W,
was made on the basis of supposing kO=kA, and comparing
equations (7) and (8).

WADC TR 53-286 15



conclusions

,Ay using a simple model to represent the helicopter

hub and fuselage, an analysis has been made of the hub-

fuselage response to harmonic forces transmitted in flight

by the rotor blades to the hub both in, and normal to,

the plane of rotation. The expressions derived for the

amplitudes of the forced vibrations both in -and normal

to the plane of rotation are particularly -imple, and

are very convenient for caleulations. The res.onance

conditions thus derived are also quite simple. The

pertinent non-dmengional parameters arel the zumber of

blaes (n), the ratio of hub natural frequenev tn rotor

angu'lar speed ,! !wh/fl), the ratio of fuselage natural

frequency to retor spfed (T=wffJa) and the ratv ;of blade

and pylon mass to half of the fuselage mass (W-Mzu ).

The ribration amplitudzem, moreover, are proportieza to

Sl 2), where I Aeaotes the amplitude of the ,citing

harmonic force. The vitbrations dus to a force in h-e

plane of rotation are ladopendent .1 the fuselage aatural

frequency parameter ( 9).

Despite the simplicity of the -pbisical structure

analyzed, and of the final analytical expressions, the

results of a typical numerical example based on the pre-

sent analysis agree veil with those based on a considerably

different, and somewhat more involved, type of analysis

for the hub response in the rotor plane of rotation due

to exciting harmonic forces in this plane.

As an extension of the present analysis, a space-

framework type of structure, insteat of the plane struc-

ture treated here, can be assumed as a physical model

of the hub-fuselage. In this manner it would be possible

to take into account the effect of the actual rotation

(6f., for example, reference 1) of the harmonic force

transmitted by the rotor blades to the hub in the plane

of rotation.
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